Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(3): 1646-1657, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38206825

RESUMO

The encapsulation efficiency and stability over time of either vitamin B12, a model hydrophilic drug, or an aqueous suspension of Cydia pomonella granulovirus (CpGV), which is a biopesticide, using a water-in-sunflower oil-in-water (W1/O/W2) double emulsion, are studied. Two antagonistic stabilizers are used to prepare the double emulsion: the mainly lipophilic polyglycerol polyricinoleate (PGPR) and the mainly hydrophilic polysaccharide Arabic gum (AG). Combining ultraviolet-visible (UV-visible) titration, rheology, and oil globule size measurement allows assessing drug release, emulsion elasticity, and globule evolution as a function of time. A stability diagram is plotted as a function of two determining parameters: the nonadsorbed PGPR concentration in the oil and the inner water droplet fraction. To understand the presence of the nonstability domains, the influence of the two identified parameters on the outermost interfacial tension is examined. Surprisingly, the inner water drop volume fraction exhibits a stabilizing phenomenon that is discussed in terms of interfacial shielding to PGPR adsorption.

2.
ACS Omega ; 8(29): 25951-25959, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37521615

RESUMO

Pterostilbene is a highly researched molecule due to its bioactivity. However, its hydrophobicity limits its application. For this reason, researchers have sought to encapsulate pterostilbene (namely, in oil-in-water emulsion) to increase its availability. Studies are lacking when it comes to the effects of pterostilbene and its concentration at the oil/water interface. This paper discusses the effects of oil types, storage temperature, and pterostilbene concentration on the stability of the emulsions, as well as the interactions between encapsulated pterostilbene and the oil and water phases. Results showed that pterostilbene is present at the oil/water interface, affecting the interfacial tension and consequently the droplet size. It was also shown that encapsulation efficiency is affected by the storage temperature and oil type. Finally, it was proven that, according to oil types and storage temperature, the stability of pterostilbene to light is affected.

3.
Langmuir ; 39(12): 4216-4223, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36926905

RESUMO

The process of convectively self-assembling particles in films suffers from low reproducibility due to its high dependency on particle concentration, as well as a variety of interactions and physical parameters. Inhomogeneities in flow rates and instabilities at the air-liquid interface are mostly responsible for reproducibility issues. These problems are aggravated by adding multiple components to the dispersion, such as binary solvent mixtures or surfactant/polymer additives, both common approaches to control stick-slip behavior. When an additive is used, not only does it change the surface tension, but also the viscosity and the evaporation rate. Worse yet, gradients in these three properties can form, which then lead to Marangoni currents. Here, we use a series of alcohols to study the role of viscosity independently of other solvent properties, to show its impact on stick-slip behavior and interband distances. We show that mixtures of glycerol and alcohol or poly(acrylic acid) and alcohol lead to more complex patterning. Marangoni currents are not always observed in co-solvent systems, being dependent on the rate of solvent evaporation. To produce homogeneous particle assemblies and control stick-slip behavior, gradients must be avoided, and the surface tension and viscosity need both be carefully controlled.

4.
J Colloid Interface Sci ; 629(Pt B): 288-299, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36155924

RESUMO

HYPOTHESIS: The mechanical properties of model air/water interfaces covered by poly(N-isopropylacrylamide) microgels depend on the microgels deformability or in other words on the amount of cross-linker added during synthesis. EXPERIMENTS: The study is carried out by measuring the apparent dilational, the compression and the shear moduli using three complementary methods: (1) the pendant drop method with perturbative areas, (2) the Langmuir trough compression, and (3) shear rheology using a double wall ring cell mounted onto a Langmuir through. FINDINGS: In the range of surface coverages studied, the interfaces exhibit a solid-like behavior and elasticity goes through a maximum as a function of the surface pressure. This is observable whatever the investigation method. This maximum elasticity depends on the microgel deformability: the softer the microgels the higher the value of the moduli. The mechanical behavior of model interfaces is discussed, taking into account the core-shell structure of the particles and their packing at the interface.

5.
Biomacromolecules ; 23(6): 2536-2551, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35640245

RESUMO

Biobased waterborne latexes were synthesized by miniemulsion radical copolymerization of a biosourced ß-myrcene (My) terpenic monomer and styrene (S). Biobased amphiphilic copolymers were designed to act as stabilizers of the initial monomer droplets and the polymer colloids dispersed in the water phase. Two types of hydrophilic polymer backbones were hydrophobically modified by terpene molecules to synthesize two series of amphiphilic copolymers with various degrees of substitution. The first series consists of poly(acrylic acid) modified with tetrahydrogeraniol moieties (PAA-g-THG) and the second series is based on the polysaccharide carboxymethylpullulan amino-functionalized with dihydromyrcenol moieties (CMP-g-(NH-DHM)). The produced waterborne latexes with diameters between 160 and 300 nm and were composed of polymers with varying glass transition temperatures (Tg, PMy = -60 °C, Tg, P(My-co-S) = -14 °C, Tg, PS = 105 °C) depending on the molar fraction of biobased ß-myrcene (fMy,0 = 0, 0.43, or 1). The latexes successfully stabilized dodecane-in-water and water-in-dodecane emulsions for months at all compositions. The waterborne latexes composed of low Tg poly(ß-myrcene) caused interesting different behavior during drying of the emulsions compared to polystyrene latexes.


Assuntos
Látex , Polímeros , Monoterpenos Acíclicos , Alcenos , Emulsificantes , Emulsões , Excipientes , Água
6.
Carbohydr Polym ; 284: 119146, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35287890

RESUMO

In this study, Pickering emulsions of dodecane and medium chain triglyceride (MCT) oils were stabilized by simply alkylated-dextran nanoparticles. Our findings show that very little of these bio-friendly nanoparticles is necessary to stabilize Pickering emulsions while providing a high time stability (more than a year at 37 °C). As dextran is known to be cleavable by dextranase enzyme, hydrolysis of the nanoparticles in the presence of dextranase could be achieved. This allowed performing on-demand destabilization of Pickering emulsions. Furthermore, two different fluorescent probes were loaded into the stabilizing particles and the oil droplets respectively, providing a proof of concept for co-encapsulation of actives in advanced delivery applications. Additionally, to a conventional fluorescence probe, quinine, an antimalarial drug was also encapsulated into the nanoparticles.


Assuntos
Dextranos , Nanopartículas , Emulsões , Óleos , Tamanho da Partícula
8.
Carbohydr Polym ; 279: 118997, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34980349

RESUMO

Pickering double oil-in-water-in-oil emulsions O/W/O were stabilized using solely cellulose nanocrystals (CNCs), which were modified by introducing surface brominated functions. The emulsions were formulated using only bio-friendly components, among which isopropyl myristate as oil phase, hydroxyl oligoethylene glycol methacrylate (OEGMA) as macromonomer, tetraethylene glycol diacrylate (TEGDA) as cross-linker, and CNCs as stabilizing particles. Formulation parameters could be tuned easily to modulate the fraction of inner emulsion droplets within the double emulsion drops or change the monomer(s) composition within the aqueous phase. The latter was further polymerized to synthesize matrix capsules. The obtained objects showed good resistance to the vacuum and were efficiently used as promising encapsulation vessels. Both hydrophobic and hydrophilic model dyes were encapsulated, with an encapsulation efficiency of about 90%.


Assuntos
Celulose/química , Nanopartículas/química , Acrilatos/química , Cápsulas , Corantes/química , Emulsões , Interações Hidrofóbicas e Hidrofílicas , Metacrilatos/química , Miristatos/química , Polietilenoglicóis/química , Polimerização
9.
ACS Omega ; 6(42): 27976-27983, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34722997

RESUMO

We investigate the role of adding a water-soluble surfactant (Tween 20) that acts as a demulsifier on the stability of water-in-dodecane emulsions stabilized with Span 80. Performing bottle test experiments, we monitor the emulsion separation process. Initially, water droplets sediment fast (∼10 min) until they become closely packed and form the so-called dense packed layer (DPL). The presence of the DPL, a long-lived metastable high-water-fraction (70-90%) emulsion separating bulk oil and water layers, slows down significantly the kinetics (∼105 min) of water separation. Once the DPL is formed, the ratio of the volume of separated water to the total water amount is called as water separation efficiency. We assume that the emulsion stability is reached when the coverage of the emulsifier surfactant exceeds 80% and use the ideal solution approximation. From that, we rationalize the water separation efficiency and the minimum demulsifier concentration required to maximize it, in terms of the mean droplet size, the surfactant concentrations, the total water volume fraction, and the adsorption strength of the water-soluble surfactant. Model predictions and experimental findings are in excellent agreement. We further test the validity and robustness of our theoretical model, by applying it successfully to data found in the literature on water-in-crude oil emulsion systems. Ultimately, our results prove that the efficiency of a demulsifier agent to break a W/O emulsion strongly correlates to its adsorption strength at the W/O interface, providing a novel contribution to the selection guidelines of chemical demulsifiers.

10.
Carbohydr Polym ; 269: 118261, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34294294

RESUMO

The implementation of light-sensitive Pickering emulsions with spatio-temporal responsiveness in advanced applications like drug-delivery, colloidal or reaction engineering would open new avenues. However, curiously, light-sensitive Pickering emulsions are barely studied in the literature and their biocompatibility and/or degradability scarcely addressed. Thus, their development remains a major challenge. As an original strategy, we synthesized light-sensitive nanoparticles based on biocompatible Poly(NitroBenzylAcrylate) grafted dextran (Dex-g-PNBA) to stabilize O/W Pickering emulsions. The produced emulsions were stable in time and could undergo time and space-controlled destabilization under light stimulus. Irradiation time and alkaline pH-control of the aqueous phase were proved to be the actual key drivers of destabilization. As the nanoparticles themselves were photolyzed under light stimulus, possible harmful effects linked to accumulation of nanomaterials should be avoided. In addition to UV light (365 nm), visible light (405 nm) was successfully used for the spatio-temporal destabilization of the emulsions, offering perspectives for life science applications.


Assuntos
Dextranos/química , Emulsões/química , Nanopartículas/química , Resinas Acrílicas/síntese química , Resinas Acrílicas/química , Resinas Acrílicas/efeitos da radiação , Alcanos/química , Dextranos/síntese química , Dextranos/efeitos da radiação , Emulsões/síntese química , Luz , Nanopartículas/efeitos da radiação , Fotólise , Estudo de Prova de Conceito , Água/química
11.
Langmuir ; 37(29): 8726-8737, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34266236

RESUMO

By conducting both a bottle test and isolate drop-drop experiments, we determine the coalescence rates of water droplets within water-in-oil emulsions stabilized by a large amount of Span 80 in the presence of Tween 20, a surfactant that acts as a demulsifier. Using a microscopic model based on a theory of hole nucleation, we establish an analytical formula that quantitatively predicts the coalescence frequency per unit area of droplets whose interfaces are fully covered by surfactant molecules. Despite its simplicity and the strong assumptions made for its derivation, this formula captures our experimental findings on Span 80-stabilized emulsions as well as other results, found in the literature, remarkably well on a wide range of water-in-crude oil systems.

12.
Biomacromolecules ; 22(8): 3497-3509, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34260207

RESUMO

Pickering inverse emulsions of hydroxyl oligoethylene glycol methacrylate were stabilized in isopropyl myristate, a biofriendly oil, using surface-modified cellulose nanocrystals (CNCs) as stabilizing particles. The emulsions were further polymerized by free or controlled radical polymerization (ATRP), taking advantage of the bromoisobutyrate functions grafted on the CNC surface. Suspension polymerization of the emulsion led to full bead or empty capsule morphologies, depending on the initiation locus. The thickness of the CNC shell surrounding the polymerized emulsions could be tuned by modulating the aggregation state of the CNCs after their surface modification. An increase from 6 to 40 CNC layers helped improve the compression moduli of the beads from a dozen to hundreds of kPa.


Assuntos
Celulose , Nanopartículas , Cápsulas , Emulsões , Polimerização
13.
J Colloid Interface Sci ; 589: 96-109, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33472152

RESUMO

HYPOTHESIS: The stability of emulsions stabilized by soft and responsive microgels and their macroscopic properties are governed by the microstructure of microgels, in particular their deformability. However, little is known about the role of the microgel chemistry, though it is expected that polymeric backbone with an amphiphilic structure is a requirement for their adsorption at the oil-water interface. EXPERIMENTS: A series of biocompatible, thermoresponsive and amphiphilic poly(oligoethylene glycol)methacrylate (pOEMA) microgels is synthesized, with varying hydrophobic-hydrophilic balance, or equivalent varying volume phase transition temperature (VPTT). Their behavior in the bulk phase and at solid interfaces is compared to their behavior at liquid interfaces, studied on flat and model interfaces by the pendant drop method, and on drops, in microgel-stabilized emulsions. FINDINGS: Controlling the composition of microgels by simply changing the number of ethylene oxide groups in the hydrophilic side chain allows a precise tuning of their VPTT in the range of 20-60 °C. Simultaneously, the swelling ratio and the deformability of the microgels increase by increasing the hydrophilicity, as a result of the polymerization process. Regardless of their hydrophilicity, all the swollen pOEMA microgels adsorb at the liquid interface and stabilize emulsions, whose flocculation state and mechanical stability depends on the microgel deformability. Unexpectedly, most emulsions remain stable upon heating above the VPTT of the microgels. Such feature highlights their extreme robustness, whose origin is discussed. This study opens new opportunities for the use of biocompatible Pickering emulsifiers.

14.
Biomacromolecules ; 21(12): 5358-5368, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33269594

RESUMO

Biosourced Pickering emulsion stabilizers with stimuli responsiveness are mostly designed for recycling and do not offer fast degradability as required for drug-delivery applications. Herein, dextran-a hydrophilic and biofriendly polysaccharide obtainable from biomass recovery-was used for the first time as a brick material for the formulation of (bio)degradable pH-sensitive Pickering emulsions. It was first modified with hydrophobic acetal moieties to provide pH-sensitive acetalated dextran. Under acidic conditions, it degrades into three biocompatible (macro)molecules: dextran, ethanol, and acetone. Nanoparticles of acetalated dextran were obtained using the nanoprecipitation process and could be similarly fully hydrolyzed under acidic conditions within 6 h. Then, O/W Pickering emulsions of dodecane (model oil) and medium-chain triglyceride (biocompatible oil) were successfully stabilized using these nanoparticles. pH-induced destabilization of these Pickering emulsions (including nanoparticles degradation) took less than 24 h. Finally, neither accumulation of nanoparticles nor harmful component release happened during the process, making this stimuli-responsive vector safe and environmentally friendly.


Assuntos
Dextranos , Nanopartículas , Sistemas de Liberação de Medicamentos , Emulsões , Concentração de Íons de Hidrogênio
15.
Soft Matter ; 16(45): 10301-10309, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33237115

RESUMO

Fusion between emulsion drops, also called coalescence, may be undesirable for storage or sought after depending on the desired application. In this latter case, a complete separation of the two liquids composing the emulsion is required. The same objective may be applicable to foams. We have performed bottle test experiments on a model system of water in oil (w/o) emulsion stabilized by high amounts of hydrophobic surfactant Span 80. We observe two regimes for emulsion separation: the first regime, which is fast and includes sedimentation of the water droplets, and the second regime, which exhibits a very dense and stable emulsion zone. We predict the initial thickness of the dense zone as a simple function of surfactant concentration and mean droplet size. From the assumption that the coalescence rate depends only on the area of the thin film between two contacted droplets, we quantitatively model the separation kinetics of the dense emulsion zone. Our results give rise to a simple method that allows measuring the coalescence frequency per unit area, only by monitoring bottle test experiments.

16.
J Colloid Interface Sci ; 561: 481-493, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31740129

RESUMO

HYPOTHESIS: Pickering emulsions stabilized by soft and responsive microgels can demulsify on demand upon microgel collapse. The concept has been explored with simple model microgels such as poly(N-isopropylacrylamide) (pNIPAM) and their derivatives, but the role of functionalization is largely unexplored. EXPERIMENTS: Saccharide-responsive phenylboronic-modified microgels are used as Pickering emulsion stabilizers. Emulsion stability and microgel organization at drop surface are studied as a function of saccharide concentration. Better insight into their behavior at interfaces is gained through adsorption kinetics and Langmuir film studies at air-water interface. FINDINGS: The functionalization of water-swollen microgels by phenylboronic functions imparts some hydrophobicity to the structure, at the origin of additional internal cross-links analogous which rigidify the structure compared to non-functionalized microgels, as proved by their slow adsorption kinetics and poor interfacial compressibility. Upon boronate ester formation with diol groups of the saccharide, the hydrophobic character of the phenylboronic acid decreases, increasing the adsorption kinetics and their interfacial compressibility. Emulsions are stable in the presence of saccharide, given the high deformability of the yet-hydrophilic microgels, and mechanically unstable with less deformable particles in low saccharide concentration. The hydrophobic-hydrophilic switch acts as a trigger to tune the microgel stabilizing properties.

17.
J Colloid Interface Sci ; 548: 1-11, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-30974412

RESUMO

The aim of the paper is to examine the adsorption kinetics of soft microgels and to understand the role of fundamental parameters such as electrostatics and deformability on the process. This knowledge is further exploited to produce microgel-stabilized emulsions using a co-flow microfluidic device. Uncharged microgels made of poly(N-isopropylacrylamide) are synthesized with variable cross-linker contents, and charged ones are produced by introducing pH sensitive co-monomers during the synthesis. The study is carried out by measuring the microgels adsorption kinetics by means of the pendant drop method. The surface pressure is derived from the previous results as a function of time and is measured as a function of the area compression using a Langmuir trough. Emulsions are produced using a microfluidic device varying the microgels concentration and their stability is visually assessed. The microgels deformability as well as higher particle concentrations favour their adsorption. The adsorption is not governed by diffusion, it is cooperative and irreversible. Conversely, the kinetics is slowed down for increasing cross-linking density. The presence of charges slows down the kinetics of adsorption. In the presence of electrolyte, the kinetics accelerates and becomes similar to the one of neutral microgels. The original features of microgel adsorption is highlighted and the differences with adsorption of polymers, star polymers, proteins, and polyelectrolytes are emphasized. Taking benefit from the adsorption kinetics, the required formulation conditions for producing microgel-stabilized emulsions using a co-flow microfluidic device are derived. There exists a critical concentration above which microgels spontaneously adsorb in a sufficient way to decrease the interfacial tension. This critical microgel concentration increases with the cross-linking density and is higher for charged microgels. Whatever the kinetics, the same surface pressure is finally reached. This peculiar behaviour is likely a consequence of the presence of dangling chains in the as-prepared microgels. Consequently, a microgel excess is required to produce emulsions using microfluidics where adsorption has to be spontaneous.


Assuntos
Resinas Acrílicas/química , Emulsões/química , Géis/química , Adsorção , Reagentes de Ligações Cruzadas/química , Concentração de Íons de Hidrogênio , Cinética , Microfluídica/métodos , Tamanho da Partícula , Polímeros/química , Pressão , Proteínas/química , Propriedades de Superfície , Temperatura
18.
Chem Sci ; 10(2): 501-507, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30713647

RESUMO

Supramolecular preorganization and interfacial recognition can provide useful architectures for colloidal building. To this aim, a novel approach, based on colloidal tectonics involving two surface-active particles containing both recognition and catalytic sites, has been developed for controlling the formation and the properties of Pickering emulsions. This was illustrated by the combination of dodecyltrimethylammonium phosphotungstate nanoparticles, [C12]3[PW12O40], and silica particles functionalized with alkyl and sulfonic acid groups, [C n /SO3H]@SiO2. The interfacial self-assembly occurs by the penetration of the alkyl chains of [C n /SO3H]@SiO2 into the [C12]3[PW12O40] supramolecular porous structure constituted of polar and apolar regions. The emulsions were used as a non-nitric acid route for adipic acid synthesis from the one-pot oxidative cleavage of cyclohexene oxide with aqueous H2O2. The catalytic performance was significantly boosted due to the synergistic interactions between the particles.

19.
Biomacromolecules ; 20(1): 490-501, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30500209

RESUMO

We report a novel method to prepare capsules, beads, or open-cell materials from Pickering emulsions of monomers, stabilized by cellulose nanocrystals (CNCs) grafted with reactive isobutyrate bromide moieties (CNC-Br). CNC-Br particles with different hydrophilic/hydrophobic balance at their surface were prepared and subsequently used to stabilize direct (O/W), inverted (W/O), or double emulsions of styrene or n-BuA. The different emulsions obtained were subsequently polymerized, by initiating an AGET-ATRP polymerization from the brominated particles surrounding the stabilized droplets. The different hybrid polymer materials obtained were subsequently characterized, and the impact of the CNCs functionalization and polymerization conditions was particularly discussed.


Assuntos
Brometos/química , Celulose/análogos & derivados , Nanopartículas/química , Polimerização , Butiratos/química , Emulsões/química , Interações Hidrofóbicas e Hidrofílicas , Estirenos/química , Tensoativos/síntese química
20.
J Colloid Interface Sci ; 533: 385-400, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30172149

RESUMO

Traditional porous monoliths Si(HIPE) (High Internal Phase Emulsion), prepared from the Tetradecyltrimethylammonium Bromide (TTAB)/dodecane/water system, offer high specific surface area, mainly due to microporosity. Aside, mesoporous materials SBA-15, prepared from Pluronic P123, have a high specific surface area, but are obtained as powder, which limits their applications. Starting from the mixed TTAB-P123 surfactant, it is expected to tune the mesoporosity of Si(HIPE), while keeping their monolithic character. The ternary TTAB/P123/water phase diagram was established by varying the weight ratio between these two surfactants. The micellar structure as well as the structural parameters of the liquid crystal domains were determined by SAXS (Small Angle X-ray Scattering). The effect of dodecane solubilization was also investigated and concentrated emulsions were formulated from the (P123/TTAB)/dodecane/water systems. After this soft matter dedicated study, the acquired knowledge was transferred toward the hierarchical porous silica generations, where the sol-gel process is involved. Mixing P123 with TTAB, macro-mesoporous monolithic silica with an enhanced contribution of the specific surface area due to mesoporosity can be prepared. The variation of the TTAB/P123 weight ratio allows controlling the porosity at the mesoscale. Moreover, the macroporosity can be tuned by changing the preparation method, by mixing either the two micellar solutions or directly the two surfactants prior the emulsification process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...